117 research outputs found

    Impact of the expression of human CTCF protein in 3D organization of the Saccharomyces cerevisiae genome

    Get PDF
    Motivation: Transcriptional regulation is particularly complex in animals and depends on long-range interactions between multiple distal enhancers and their target promoters. Thus, the 3D organization of the chromatin is critical to guarantee this interactions and to avoid the spurious ones. In different groups of animals, such as humans and other vertebrates, the protein CTCF works as an essential factor to control the 3D structure of the genome, regulating cohesin-mediated chromatin interactions and the formation of loops between distal enhancers and their target promoters. In contrast, this type of long-range cis-regulation and its associated 3D chromatin organization have not been observed in other eukaryotic lineages such as plants and fungi. Interestingly, CTCF is also absent from the genome of these non-animal species. To investigate how the origin of CTCF could have contributed to the evolution of long-range chromatin interactions in animals, we have used the model organism Saccharomyces cerevisiae to study the effects that the expression of CTCF may have on the 3D organization of a fungal genome that does not have distal cis-regulation.Methods: We are generating two different yeast strains. Both of them contain a plasmid expressing human CTCF under the control of the inducible galactose promoter, but one of the strains will be further modified by the introduction of a sequence containing binding sites for human CTCF through homologous recombination using sigma LTR sequences from the Ty3 retrotransposon.Results: We have already generated a yeast strain to express human CTCF, and this strain is able to survive when we induce CTCF expression with galactose. Furthermore, to confirm the expression of CTCF we have done a western blot. Finally, we have designed the sigma Ty3 construct to introduce CTCF binding sites by selecting a human DNA sequence associated to chromatin loop border.Conclusions: We have confirmed that S.cerevisiae is still viable when it expresses the CTCF protein. The CTCF protein. The next steps will be i) to synthetize the sigma Ty3 construct with CTCF sites and introduce it in the yeast genome, ii) to analize by ChIP-seq if CTCF is able to bind endogenous yeast regions or if it can only bind those sites introduced using the sigma Ty3 construct and iii) to study how the presence of CTCF with and without the insertion of human CTCF binding sites affects the 3D chromatin organization of S.cerevisiae

    The medaka mutation tintachina sheds light on the evolution of V-ATPase B subunits in vertebrates

    Get PDF
    This work is licensed under a Creative Commons Attribution 3.0 Unported license.Vacuolar-type H+ ATPases (V-ATPases) are multimeric protein complexes that play a universal role in the acidification of intracellular compartments in eukaryotic cells. We have isolated the recessive medaka mutation tintachina (tch), which carries an inactivating modification of the conserved glycine residue (G75R) of the proton pump subunit atp6v1Ba/vatB1. Mutant embryos show penetrant pigmentation defects, massive brain apoptosis and lethality before hatching. Strikingly, an equivalent mutation in atp6v1B1 (G78R) has been reported in a family of patients suffering from distal renal tubular acidosis (dRTA), a hereditary disease that causes metabolic acidosis due to impaired kidney function. This poses the question as to how molecularly identical mutations result in markedly different phenotypes in two vertebrate species. Our work offers an explanation for this phenomenon. We propose that, after successive rounds of whole-genome duplication, the emergence of paralogous copies allowed the divergence of the atp6v1B cis-regulatory control in different vertebrate groups.IM holds a posdoctoral contract supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant [268513]. This work was supported by grants BFU2008-04362, BFU2011-22916 and P11-CVI-7256 to JRMM.Peer reviewe

    Mouse Obox and Crxos modulate preimplantation transcriptional profiles revealing similarity between paralogous mouse and human homeobox genes

    Full text link
    Background: ETCHbox genes are eutherian-specific homeobox genes expressed during preimplantation develop-ment at a time when the first cell lineage decisions are being made. The mouse has an unusual repertoire of ETCH-box genes with several gene families lost in evolution and the remaining two, Crxos and Obox, greatly divergent in sequence and number. Each has undergone duplication to give a double homeodomain Crxos locus and a large cluster of over 60 Obox loci. The gene content differences between species raise important questions about how evolution can tolerate loss of genes implicated in key developmental events. Results: We find that Crxos internal duplication occurred in the mouse lineage, while Obox duplication was stepwise, generating subgroups with distinct sequence and expression. Ectopic expression of three Obox genes and a Crxos transcript in primary mouse embryonic cells followed by transcriptome sequencing allowed investigation into their functional roles. We find distinct transcriptomic influences for different Obox subgroups and Crxos, including modula-tion of genes related to zygotic genome activation and preparation for blastocyst formation. Comparison with similar experiments performed using human homeobox genes reveals striking overlap between genes downstream of mouse Crxos and genes downstream of human ARGFX. Conclusions: Mouse Crxos and human ARGFX homeobox genes are paralogous rather than orthologous, yet they have evolved to regulate a common set of genes. This suggests there was compensation of function alongside gene loss through co-option of a different locus. Functional compensation by non-orthologous genes with dissimilar sequences is unusual but may indicate underlying distributed robustness. Compensation may be driven by the strong evolutionary pressure for successful early embryo development

    Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizer

    Get PDF
    Background: The zona limitans intrathalamica (ZLI) and the isthmus organizer (IsO) are two major secondary organizers of vertebrate brain development. These organizers are located at the interface of the expression domains of key patterning genes (Fezf-Irx and Otx-Gbx, respectively). To gain insights into the evolutionary origin of the ZLI, we studied Fezf in bilaterians. Results: In this paper, we identified a conserved sequence motif (Fezf box) in all bilaterians. We report the expression pattern of Fezf in amphioxus and Drosophila and compare it with those of Gbx, Otx and Irx. We found that the relative expression patterns of these genes in vertebrates are fully conserved in amphioxus and flies, indicating that the genetic subdivisions defining the location of both secondary organizers in early vertebrate brain development were probably present in the last common ancestor of extant bilaterians. However, in contrast to vertebrates, we found that Irx-defective flies do not show an affected Fezf expression pattern. Conclusions: The absence of expression of the corresponding morphogens from cells at these conserved genetic boundaries in invertebrates suggests that the organizing properties might have evolved specifically in the vertebrate lineage by the recruitment of key morphogens to these conserved genetic locations

    Comparative genomics of the Hedgehog loci in chordates and the origins of Shh regulatory novelties

    Get PDF
    The origin and evolution of the complex regulatory landscapes of some vertebrate developmental genes, often spanning hundreds of Kbp and including neighboring genes, remain poorly understood. The Sonic Hedgehog (Shh) genomic regulatory block (GRB) is one of the best functionally characterized examples, with several discrete enhancers reported within its introns, vast upstream gene-free region and neighboring genes (Lmbr1 and Rnf32). To investigate the origin and evolution of this GRB, we sequenced and characterized the Hedgehog (Hh) loci from three invertebrate chordate amphioxus species, which share several early expression domains with Shh. Using phylogenetic footprinting within and between chordate lineages, and reporter assays in zebrafish probing >30 Kbp of amphioxus Hh, we report large sequence and functional divergence between both groups. In addition, we show that the linkage of Shh to Lmbr1 and Rnf32, necessary for the unique gnatostomate-specific Shh limb expression, is a vertebrate novelty occurred between the two whole-genome duplications

    New genes from old: asymmetric divergence of gene duplicates and the evolution of development

    Get PDF
    Gene duplications and gene losses have been frequent events in the evolution of animal genomes, with the balance between these two dynamic processes contributing to major differences in gene number between species. After gene duplication, it is common for both daughter genes to accumulate sequence change at approximately equal rates. In some cases, however, the accumulation of sequence change is highly uneven with one copy radically diverging from its paralogue. Such ‘asymmetric evolution’ seems commoner after tandem gene duplication than after whole-genome duplication, and can generate substantially novel genes. We describe examples of asymmetric evolution in duplicated homeobox genes of moths, molluscs and mammals, in each case generating new homeobox genes that were recruited to novel developmental roles. The prevalence of asymmetric divergence of gene duplicates has been underappreciated, in part, because the origin of highly divergent genes can be difficult to resolve using standard phylogenetic methods. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’.</jats:p

    Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm

    Full text link
    The evolution of vertebrates from an ancestral chordate was accompanied by the acquisition of a predatory lifestyle closely associated to the origin of a novel anterior structure, the highly specialized head. While the vertebrate head mesoderm is unsegmented, the paraxial mesoderm of the earliest divergent chordate clade, the cephalochordates (amphioxus), is fully segmented in somites. We have previously shown that fibroblast growth factor signalling controls the formation of the most anterior somites in amphioxus; therefore, unravelling the fibroblast growth factor signalling downstream effectors is of crucial importance to shed light on the evolutionary origin of vertebrate head muscles. By using a comparative RNA sequencing approach and genetic functional analyses, we show that several transcription factors, such as Six1/2, Pax3/7 and Zic, act in combination to ensure the formation of three different somite populations. Interestingly, these proteins are orthologous to key regulators of trunk, and not head, muscle formation in vertebrates. Contrary to prevailing thinking, our results suggest that the vertebrate head mesoderm is of visceral and not paraxial origin and support a multistep evolutionary scenario for the appearance of the unsegmented mesoderm of the vertebrates new 'head'

    Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints

    Get PDF
    This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date; after six months, it is available under a Creative Commons License.-- et al.The order of genes in eukaryotic genomes has generally been assumed to be neutral, since gene order is largely scrambled over evolutionary time. Only a handful of exceptional examples are known, typically involving deeply conserved clusters of tandemly duplicated genes (e.g., Hox genes and histones). Here we report the first systematic survey of microsynteny conservation across metazoans, utilizing 17 genome sequences. We identified nearly 600 pairs of unrelated genes that have remained tightly physically linked in diverse lineages across over 600 million years of evolution. Integrating sequence conservation, gene expression data, gene function, epigenetic marks, and other genomic features, we provide extensive evidence that many conserved ancient linkages involve (1) the coordinated transcription of neighboring genes, or (2) genomic regulatory blocks (GRBs) in which transcriptional enhancers controlling developmental genes are contained within nearby bystander genes. In addition, we generated ChIP-seq data for key histone modifications in zebrafish embryos, which provided further evidence of putative GRBs in embryonic development. Finally, using chromosome conformation capture (3C) assays and stable transgenic experiments, we demonstrate that enhancers within bystander genes drive the expression of genes such as Otx and Islet, critical regulators of central nervous system development across bilaterians. These results suggest that ancient genomic functional associations are far more common than previously thought—involving ∼12% of the ancestral bilaterian genome—and that cis-regulatory constraints are crucial in determining metazoan genome architecture.M.I., M.S.A., S.W.R., and H.B.F. were funded by NIH grant 1R21HG005240-01A1. H.B.F. is an Alfred P. Sloan Fellow and Pew Scholar in the Biomedical Sciences. J.J.T., A.F-M., O.B., E.C-M., and J.L.G-S. were funded by grants BFU2010-14839, CSD2007-00008, and Proyecto de Excelencia CVI-3488.Peer reviewe

    Ancient Genomic Regulatory Blocks Are a Source for Regulatory Gene Deserts in Vertebrates after Whole-Genome Duplications

    Full text link
    We investigated how the two rounds of whole genome duplication that occurred at the base of the vertebrate lineage have impacted ancient microsyntenic associations involving developmental regulators (known as genomic regulatory blocks, GRBs). We showed that the majority of GRBs identified in the last common ancestor of chordates have been maintained as a single copy in humans. We found evidence that dismantling of the duplicated GRB copies occurred early in vertebrate evolution often through the differential retention of the regulatory gene but loss of the bystander gene's exonic sequences. Despite the large evolutionary scale, the presence of duplicated highly conserved non-coding regions provided unambiguous proof for this scenario for multiple ancient GRBs. Remarkably, the dismantling of ancient GRB duplicates has contributed to the creation of large gene deserts associated with regulatory genes in vertebrates, providing a potentially widespread mechanism for the origin of these enigmatic genomic traits

    学会抄録

    Get PDF
    Genes affected by ectopic expression. List of genes with differential expression triggered by ectopic expression of ETCHbox genes as determined by DESeq2. (XLSX 401 kb
    corecore